top of page
gorSAys_xZ41NHvYilLR05jhmealg5wC6tAVWbmPcq4.jpg

AI FAIRNESS 
GLOBAL LIBRARY

Tools, guides, resources, metrics,

and methodologies to support institutions

transforming AI fairness principles into practice. 

All Resources

Filter by Language:

Diseño sin título.jpg

The Word Embeddings Fairness Evaluation Framework

Origin: 

Language:

Type: 

Creator: 

English

Tech tool

Millennium Institute for Foundational Research on Data (IMFD).

Open source library for measuring bias in word embedding models. It generalizes many existing fairness metrics into a unified framework and provides a standard interface for: encapsulating existing fairness metrics from previous work and designing new ones, encapsulating the test words used by fairness metrics into standard objects called queries and computing a fairness metric on a given pre-trained word embedding model using user-given queries. Produced mainly for Tech teams.

Diseño sin título.jpg

Fairness Compass

Origin: 

Language:

Type: 

Creator: 

Europe

English

Guide

Boris Ruf and Marcin Detyniecki (AI Research at AXA)

Common definitions of fairness and ways of calculating the performance of a machine learning model. Mathematical tension across different fairness definitions makes it impossible to achieve "complete fairness." It helps stakeholders identify the most appropriate fairness definition for a specific use case via a decision tree. Produced mainly for Managers, Tech teams & Non - tech teams.

Diseño sin título.jpg

NZ Algorithm Charter

Origin: 

Language:

Type: 

Creator: 

Pacific

English & Maori

Framework

Aotearoa/NZ Government

Demonstrates a commitment to ensuring New Zealanders to have confidence in how government agencies use algorithms. The charter is one of many ways that the government demonstrates transparency and accountability in the use of data. Produced mainly for Government agencies.

Diseño sin título.jpg

Model Cards

Origin: 

Language:

Type: 

Creator: 

North America

English

Guide or manual

Google

Short documents accompanying trained machine learning models that provide benchmarked evaluation in a variety of conditions, such as across different cultural, demographic, or phenotypic groups and intersectional groups that are relevant to the intended application domains. Produced mainly for: C levels & Managers.

Diseño sin título.jpg

Ethical Toolkit for Engineering/Design Practice

Origin: 

Language:

Type: 

Creator: 

North America

English

Tech tool

Markkula Center for Applied Ethics – Santa Clara University

Santa Clara University - Multi set of tools implementing ethical reflection, deliberation, and judgment into engineering and design workflows.

Diseño sin título.jpg

Fairness Flow

Origin: 

Language:

Type: 

Creator: 

North America

English

Guide or manual

Facebook

Engages in cutting-edge research that can improve and power new product experiences at a huge scale for our community. Building on Facebook AI's key principles of openness, collaboration, excellence, and scale, we make big, bold research investments focused on building social value and bringing the world closer together. Produced mainly for: Non - tech teams

Diseño sin título.jpg

Veritas Initiative

Origin: 

Language:

Type: 

Creator: 

Asia

English

Tech tool

Monetary Authority of Singapore

Framework for financial institutions to promote the responsible adoption of Artificial Intelligence and Data Analytics. It has developed a fairness assessment methodology in credit risk scoring and customer marketing, and has published whitepapers on the fairness assessment methodology and the open source code of these two use cases. Produced mainly for Tech teams.

Diseño sin título.jpg

Bias in machine learning and ethical implications

Origin: 

Language:

Type: 

Creator: 

North America

English

Guide

Institute of International Finance

The report outlines ways in which financial institutions are cautiously implementing Machine Learning into their processes, such as in credit risk assessment and anti-money laundering, and the mathematical as well as social components of fairness to be considered.
Produced mainly for C leve & Managers.

Diseño sin título.jpg

Fairness Toolkit (LiFT)

Origin: 

Language:

Type: 

Creator: 

North America

English

Tech tool

LinkedIn

Linkedin - open source software library designed to enable the measurement of fairness in AI and machine learning workflows.

Diseño sin título.jpg

Model Artificial Intelligence Governance Framework Second edition

Origin: 

Language:

Type: 

Creator: 

Asia

English

Guide or manual

SG:D, IMDA, PDPC (Singapore)

Incorporates the experiences of organizations that have adopted AI, and feedback from our participation in leading international platforms, such as the European Commission’s High-Level Expert Group and the OECD Expert Group on AI. Produced mainly for Manager.

Diseño sin título.jpg

Ethics & Algorithms Toolkit

Origin: 

Language:

Type: 

Creator: 

North America

English

Tech tool

GovEx, the City and County of San Francisco, Harvard DataSmart, Data Community DC

A practical toolkit for cities to use to help them identify the risks of using an AI algorithm, and maps out the mitigating measures for different risks.

Diseño sin título.jpg

¿Cómo implementar la debida diligencia en derechos humanos en el desarrollo de tecnología? El impacto en la privacidad

Origin: 

Language:

Type: 

Creator: 

Latin America and the Caribbean

Spanish

Guide

Asociación por los Derechos Civiles. Written by Leandro Ucciferri, with the independent consultants Agustina Bendersky and Denisse Cufré

Helps identifying how the technological development may harm people's right to privacy. Either directly by the use of such technology, or indirectly as a result of the use of a third party. Produced mainly for Managers

¿Deseas contribuir?

 Esta es una Biblioteca Global Viva.

Si tienes algún recurso sobre la justicia de la IA que no ha sido publicado en esta

Biblioteca y te gustaría que se tenga en cuenta, o si eres el

creador de un recurso publicado aquí, y le gustaría editar la información,

Por favor envíanos un email

yo

Divulgaciones:

El material incluido en este sitio no está necesariamente respaldado por el Foro Económico Mundial, el Consejo del Futuro Global sobre IA para la Humanidad, C Minds y/u otros colaboradores.

Los y las lectoras y/o personas usuarias de cada recurso deben evaluar cada herramienta para su propósito específico previsto. Esta primera interacción incluye solo recursos gratuitos y disponibles públicamente.

La propiedad intelectual de todos los recursos es propiedad de los creadores de cada recurso individual.

Este material puede ser compartido, siempre que se atribuya claramente a sus creadores. Este material no puede ser utilizado con fines comerciales.

Consejo del Futuro Global sobre IA para la Humanidad,WEF con el apoyo de C Minds

© 2020 - 2021  

bottom of page